Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider a general non-stochastic online pricing bandit setting in a procurement scenario where a buyer with a budget wants to procure items from a fixed set of sellers to maximize the buyer's reward by dynamically offering purchasing prices to the sellers, where the sellers' costs and values at each time period can change arbitrarily and the sellers determine whether to accept the offered prices to sell the items. This setting models online pricing scenarios of procuring resources or services in multi-agent systems. We first consider the offline setting when sellers' costs and values are known in advance and investigate the best fixed-price policy in hindsight. We show that it has a tight approximation guarantee with respect to the offline optimal solutions. In the general online setting, we propose an online pricing policy, Granularity-based Pricing (GAP), which exploits underlying side-information from the feedback graph when the budget is given as the input. We show that GAP achieves an upper bound of O(n{v_{max}}{c_{min}}sqrt{B/c_{min}}ln B) on the alpha-regret where n, v_{max}, c_{min}, and B are the number, the maximum value, the minimum cost of sellers, and the budget, respectively. We then extend it to the unknown budget case by developing a variant of GAP, namely Doubling-GAP, and show its alpha-regret is at most O(n{v_{max}}{c_{min}}sqrt{B/c_{min}}ln2 B). We also provide an alpha-regret lower bound Omega(v_{max}sqrt{Bn/c_{min}}) of any online policy that is tight up to sub-linear terms. We conduct simulation experiments to show that the proposed policy outperforms the baseline algorithms.more » « lessFree, publicly-accessible full text available April 11, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract A single-beam ion source was developed and used in combination with magnetron sputtering to modulate the film microstructure. The ion source emits a single beam of ions that interact with the deposited film and simultaneously enhances the magnetron discharge. The magnetron voltage can be adjusted over a wide range, from approximately 240 to 130 V, as the voltage of the ion source varies from 0 to 150 V, while the magnetron current increases accordingly. The low-voltage high-current magnetron discharge enables a ‘soft sputtering mode’, which is beneficial for thin-film growth. Indium tin oxide (ITO) thin films were deposited at room temperature using a combined single-beam ion source and magnetron sputtering. The ion beam resulted in the formation of polycrystalline ITO thin films with significantly reduced resistivity and surface roughness. Single-beam ion-source-enhanced magnetron sputtering has many potential applications in which low-temperature growth of thin films is required, such as coatings for organic solar cells.more » « less
-
In developing countries, high schoolers rarely have opportunities to conduct chemical experiments due to the lack of facilities. There-fore, chemistry experiment simulation is an alternative environment for students to do the chemistry lab assignments. Despite the need of creating virtual simulations to expand the application usability, it is challenging to synthesize a realistic environment given the limited computing resources. In this paper, we propose Chemisim, a highly realistic web-based VR laboratory simulation for students with high quality and usability. In particular, we make use of the fluid simulation system to mimic real chemical reactions. The imple-mented simulation was based on the chemistry assignments in the national education system, consulted by chemical teachers. Then we deployed the simulator on the web to promote a wide range of students usage. The system was evaluated by collecting and analyzing feedback from chemical teachers based on four criteria, namely, convenience, realism, functionality, and preferences. Our experimental findings address educational challenges and produce innovative technical solutions to solve them in developing countries.more » « less
An official website of the United States government
